Unforeseen Dangers: Drugs That Are Hazardous to Us

Patricia C. Kienle, RPh, MPA, FASHP
Director, Accreditation and Medication Safety
Cardinal Health Innovative Delivery Solutions
Disclosure

• Patricia Kienle is a member of the USP Compounding Expert Committee, but this talk is not endorsed by or affiliated with USP
What’s All the Fuss?
Preventing Occupational Exposure

Warning!

Working with or near hazardous drugs in healthcare settings may cause skin rashes, infertility, miscarriage, birth defects, and possibly leukemia or other cancers.
Purpose of USP <800>

• Approximately 8 million workers are potentially exposed to hazardous drugs (HDs) each year
• <800> was developed to promote patient safety, worker safety, and environmental protection
• Defines practice and quality standards for handling HDs
• Builds on existing science, guidelines, and expertise
Hazardous Drug Guidance

1960s
Reports in medical literature

1970s
European study found mutagenicity within urine of nurses. Beginning to evaluate occupational exposure in healthcare professionals

1980s
ASHP published TAB (Technical Assistance Bulletin) regarding HDs, primary focused on chemotherapy agents

2004
NIOSH published Alert on preventing occupational exposure to HDs

2011-2014
Expert panel formed, first and second versions both released for public comment

July 1, 2018
USP General Chapter <800> enforceable

Feb 2016
USP General Chapter <800> published

INS NATIONAL ACADEMY
Who Enforces USP Standards?

- FDA and other federal agencies
- States – such as boards of health
- Accreditation organizations – medication preparation standards apply throughout an organization, not just to pharmacy
But Nurses Don’t Compound

- USP compounding chapters are broad in scope, and cover any mixing of medications
- USP <797> contains information on mixing sterile preparations for immediate use
- USP <800> includes that and more
Scope of <800>

- Life Cycle of HDs
- All Healthcare Entities
- All Healthcare Personnel
What Drugs are Hazardous?

- Any drug identified by at least one of the following criteria
 - Carcinogenicity
 - Teratogenicity or other developmental toxicity
 - Reproductive toxicity
 - Organ toxicity at low doses
 - Genotoxicity
 - Structure and toxicity profile of new drug that mimics existing HD
Scope of <800>
Official Date of USP $<800>$

- Official on December 1, 2019
 - This is a recent change
- Enforceable
 - Federal agencies
 - State agencies
 - Accreditation organizations
Genesis of <800>
Elements of <800>

- Facilities
- PPE
- Hazard Communication
- Transport & Disposal
- Dispensing & Administration
- Compounding
- Cleaning
- Medical Surveillance

INS NATIONAL ACADEMY
NIOSH Approach

• USP <800> establishes the containment strategies and work practices best known to control hazardous drug contamination
 • Engineering controls
 • Protective equipment
 • Work practices

https://www.cdc.gov/niosh/topics/hierarchy
Key Elements of <800>

- Containment
- Assessment of Risk
- Work Practices
NIOSH List of Hazardous Drugs

- Hazardous to healthcare personnel
 - Different from EPA hazardous materials which are hazardous to the environment
- Use of the list is required
 - Tables 1, 2, and 3
- Use of Table 5 Personal Protective Equipment (PPE) is not required, but provides a comprehensive list for policy development

www.cdc.gov/niosh/docs/2016-161/pdfs/2016-161.pdf
Your HD List

- Must contain all the HDs on the NIOSH list that you handle
- Must be specific to the dosage form level
NIOSH List of Hazardous Drugs

- Antineoplastic Drugs
- Non-Antineoplastic Drugs
- Reproductive-Only Hazards
Table 2 Examples

- Azathioprine
- Cyclosporine
- Fosphenytoin

- Risperidone
- Spironolactone
- Zidovudine
Table 3 Examples

- Clonazepam
- Colchicine
- Fluconazole
- Oxytocin
- Pamidronate
- Warfarin
Options

- Handle all drugs and dosage forms with all containment and work practices listed in <800>

- Perform an Assessment of Risk to determine alternative containment strategies and work practices
What Drugs Can BeHandled Differently?

<table>
<thead>
<tr>
<th>All <800> Precautions Apply</th>
<th>Can Be Included in Assessment of Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw chemical of any HD on the list</td>
<td>Antineoplastics that only need to be counted or packaged</td>
</tr>
<tr>
<td>Antineoplastics that need to be manipulated</td>
<td>Table 2 drugs</td>
</tr>
<tr>
<td>Items that don’t fit the Assessment of Risk</td>
<td>Table 3 drugs</td>
</tr>
</tbody>
</table>
Compliance with All <800> Elements

• Facilities
 – Hood: Primary Engineering Control (PEC)
 – Room: Secondary Engineering Control (SEC)

• Personal Protective Equipment

• Work Practices
 – Policies and procedures
 – Containment from receiving to administering
 – Decontamination of work surfaces
OK to Consider for Assessment of Risk

- Antineoplastics that only need to be counted or packaged
- Non-antineoplastic meds (Table 2)
- Reproductive-only hazards (Table 3)
Alternative Strategy Examples
For Assessment of Risk

- Purchase unit-dose or unit-of-use
- Store in lidded bins
- Use closed system drug-transfer devices (CSTDs)
- Handle with chemo gloves
- Designate tackle boxes for transport
“Must” vs “Should”

- Must or shall = requirement
 - PPE
 - CSTDs for administration when the dosage form allows
 - Work practices that promote containment

- Should = recommendation
 - Use of CSTDs for compounding
 - Wipe samples for environmental sampling
 - Medical surveillance
Receiving and Storage

- HDs can be received in the same area as other drugs
 - Should have a designated area
 - Can be neutral/normal or negative pressure
 - Cannot be positive pressure
- HDs (unless entity-exempt through the Assessment of Risk)
 - Must be stored with proper containment
Closed System Drug-Transfer Device

- CSTDs mechanically prohibit the transfer of environmental contaminants into the system and the escape of hazardous drug or vapor
- Required for administration when the dosage form allows
- Recommended for use when compounding

Photo courtesy of BD
Personal Protective Equipment (PPE)

• Gloves tested to ASTM D6978
• Gowns that are impervious, close in back, knit or elastic sleeves
• In certain cases
 • Respirator
 • Eye protection

Disposable PPE cannot be re-used
Work Practices

• Policies and procedures
• Containment
 • Outside of container once compound completed
 • Waiting for administration
• PPE
• Decontamination procedures
Cleaning Process for HDs

1. Deactivate and Decontaminate
2. Clean
3. Disinfect
Cleaning Steps

<table>
<thead>
<tr>
<th>Function</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deactivate and decontaminate</td>
<td>Properly-diluted EPA-approved oxidizer intended for use with HDs</td>
</tr>
<tr>
<td>Clean</td>
<td>Germicidal detergent</td>
</tr>
<tr>
<td>Disinfect</td>
<td>70% isopropyl alcohol (sterile for sterile compounding)</td>
</tr>
</tbody>
</table>
Resources

- **USP <800> FAQs**

- **www.readyfor800.com**
 - One hour panel discussion (physician, nurse, pharmacist
 - Short (~5 minute) videos targeted to specific audiences
 - Ready for 800 checklist

- **Perform an Assessment of Risk to Comply with USP <800>**
 - Pharmacy Purchasing and Products (www.pppmag.com), March 2017
References

www.ons.org

www.hazmedsafety.com

www.ashp.org